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Abstract
The effects of electron–electron scattering on the electron energy distribution, as well as
substrate and gate currents in short channel MOSFETs (metal-oxide-semiconductor
field-effect transistors) are explored using the convective scheme, or CS, a method of
characteristics. Effects of electron–electron scattering are explored for a MOSFET with
uniform doping in the channel as well as for an asymmetric device structure, a
focused-ion-beam (FIBMOS) transistor, for both 70 nm and 250 nm channel length devices.
Effects of electron–electron scattering on a standard 35 nm channel length MOSFET are also
included. The high substrate doping that is required for such short channel length devices
leads to large electric fields. The purpose of the FIB implant is to improve hot-carrier
reliability by reducing the electric field in the channel. Electron–electron scattering increases
the amount of electrons in the tail, despite the fact that the applied potential is significantly
below the threshold for injection of electrons into the gate oxide. The ratio of gate-to-substrate
current, Ig/Isub, is investigated as an indicator of the level of degradation. At such short
channel lengths, there are degrading and non-degrading components of gate and substrate
current. The non-degrading components of gate and substrate current correlate strongly, so
that the ratio of Ig/Isub is an efficient indicator of device degradation. The energy thresholds
for impact ionization and for emission of electrons into the gate oxide are crucial in
determining the ratio of these currents. The substrate and gate currents obtained indicate that
hot-carrier effects continue to be an issue for device performance, even for nanometer-scale
devices. The density of electrons is higher at very short channel lengths due to the need to
have shallow junctions and leads to a greater amount of Coulomb collisions. Increased
Coulomb collisions may lead to strongly reduced lifetimes in nanometer-scale devices.

1. Introduction

With the advent of nanometer-scale electronics, hundreds of
millions of transistors reside on a chip area of roughly a few
square centimetres. As the feature sizes of these devices
approach 10 nanometers, circuit densities are projected to
reach the gigascale [1]. In a short channel metal-oxide-

semiconductor field-effect transistor (MOSFET), high electric
fields develop at the drain end of the device, which can lead
to hot-carrier effects and device degradation. Originally, it
had been thought that for drain biases below approximately
2.7 V, electrons would not be able to gain enough energy to
cause interface damage or device degradation, no matter how
short the channel length is [2]. Tam et al directly measured
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gate currents at a drain bias of 2.35 V [3]. While one would
have expected that hot-carrier effects would be diminished
as the power-supply voltages are scaled, the electron energy
distribution is affected at energy values as high as 3 eV, even
with a power supply voltage as low as 1.0 volt [4]. Ang et al
[5] noted that the substrate current at low drain bias (the
substrate current is one measure of hot-carrier effects) arises
from a large population of electrons with energies between
1.2 eV and qVd , where Vd is the potential applied to the drain.

In this work a kinetic transport model is implemented that
is relevant in cases where the mean free path is comparable
to the device dimensions. The method is referred to as
the convective scheme, or CS, and has previously been
used extensively for plasma simulations [6–9]. The energy
distribution of electrons is explored in this work using three
velocity dimensions and two space dimensions. In order to find
the electron distribution, it is necessary to solve the Boltzmann
transport equation, which is given by [10]

∂f

∂t
+ v · ∇f +

dk
dt

· ∂f

∂k
= ∂f

∂t

∣∣∣∣
sc

(1)

where the second term on the left-hand side of the equation
represents the rate of change of the distribution due to the
particles’ velocity and the third term on the left-hand side
represents the rate of change of the distribution due to the
particles’ experiencing external forces. The term on the right-
hand side of the equation is the collision term, i.e., the effect
of collisions in altering the distribution function [10]. The
Boltzmann transport equation is valid in the semiclassical
limit. We want to note that as the device dimensions approach
the deBroglie wavelength, the validity of the semiclassical
approach begins to come into question. At room temperature,
the deBroglie wavelength, λDB is equal to

λDB =
(

2πh̄2

mkbT

)1/2

= 8.4 nm. (2)

The 35 nm channel length device thus approaches this limit
and the results should be viewed with the appropriate caution,
although Lundstrom and Ren employed a 10 nm MOSFET
transistor in their work, citing the observation that MOSFETs
operate essentially classically down to roughly 10 nm channel
length [11].

The particular implementation of the CS used in this
work finds the scattering rate in a phase space cell from a
set of probabilities that are found from the convective scheme
solution of the Boltzmann equation. This basically consists
of finding a Green’s function for a differential equation by
considering equations with a delta-function source. The
probabilities used have to do with the manner in which
particles move from one cell to another on the mesh and with
scattering events of the particles. The method is referred to
as the transition probability matrix (TPM) method, and this
method of obtaining the collision rate of particles has been
implemented in previous works [12, 13]. More details on this
approach are given in the appendix.

Childs and Leung [14] established a technique for solving
the one-dimensional spatially dependent BTE with electron–
electron interactions included in the scattering model. This

was accomplished by solving the BTE over a potential
profile typical of that found in the channel of a MOSFET.
A comparison was made between the distribution functions
obtained when electron–electron interactions are included
and excluded from the scattering model. They incorporated
a few approximations in order to make the problem more
tractable. The first approximation considers the electron–
electron interaction to be a localized event. The second
assumes that the distribution of the interacting electrons is
isotropic.

The gate current is often used as a measure of hot-carrier
damage. Gate currents were observed in MOSFETs with drain
biases substantially below what is normally required to cause
hot-carrier effects. Childs and Leung concluded that in the
absence of other energy sources, electron–electron interaction
can account for hot-carrier effects with low supply voltages.

Many authors recognize the importance of electron–
electron scattering in semiconductor device simulation as it
relates to the high-energy tail. Dyke et al [15] demonstrated
a hybrid Monte Carlo/iterative technique for solving the
Boltzmann transport equation. Their results indicate that
the method can be used to explain the form of the hot-
carrier distribution in MOSFETs operated at low drain bias.
Their results indicate that in the absence of electron–electron
interactions, the hot-carrier distribution at energies greater than
those available from the electric field falls off rapidly. On the
other hand, when electron–electron interactions are included,
the hot-carrier distribution is enhanced and increases as the
drain voltage.

McMahon et al [16] also noted the existence of device
damage due to hot carriers when the supply voltage has been
scaled below the threshold energy for damage. They cite the
importance of electron–electron scattering in addition to the
high-energy tail, but note a couple of other reasons for such
damage. The activation energy may not be a ‘hard’ barrier; in
other words, there may be a distribution of activation energies.
Also, the barrier could potentially be surmounted by multiple
carrier processes acting together [16, 17].

Hess et al [17] noted that if the electron energy distribution
decreases exponentially above the operating voltage V ,
then according to Boltzmann’s law, there should be large
differences in the amount of degradation as the operating
voltage is scaled. A reduction in power supply from 3.3 V
to 2.5 V, following this same exponential variation, should
lead to a factor of 1020 reduction in degradation. This does not
happen experimentally, i.e., the reduction in degradation does
not scale with the reduction in voltage. Some have suggested
that carrier–carrier interactions could explain the degradation
at low bias, but it is not clear that the level of carrier–carrier
scattering is sufficient to induce the level of damage that
is seen. An example from the scattering rates involved in
emission for electron–electron scattering should illustrate this
point. A scattering rate that gives an energy exchange of 1 eV
or greater is roughly 107 s−1. The transit time of a high
energy electron will typically be less than 10−12 s. Hence, less
than 1 in 105 electrons would reach the energies of a 3.6 eV
threshold with a power supply of 2.5 V. They note that the Si–H
desorption energy can be significantly reduced for Si–H bonds
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Figure 1. The figure shows a MOSFET with a focused-ion-beam
(FIB) implant next to the source region.

at the interface because hydrogen can desorb by entering the
silicon first. Also, studies of Si–H desorption with scanning
tunnelling microscopy (STM) have shown that lower-energy
carriers (less than 3.0 eV) can break bonds. The point is that
carrier–carrier scattering does in fact play a role in enhancing
the high-energy tail but the actual threshold for damage may
be somewhat lower than previously expected [17].

In previous work, the importance of electron–electron, or
Coulomb, collisions was recognized [18] as they affect the
energy transfer between ‘cold’ and ‘hot’ electron components,
which are found in the negative glow of dc discharges and in
the ‘bulk’ plasma of rf discharges. A technique often used
in gaseous electronics was employed wherein the electron
distribution function can be approximated by the sum of two or
more Maxwellians and whereby a formula from Longmire [19]
gives the rate of energy transfer between two Maxwellians and
is used to produce the effect of electron–electron scattering. It
is evident that whether one is referring to the fluid state or the
solid state of matter that Coulomb collisions play a significant
role in calculating the high-energy tail of the electron energy
distribution.

A number of asymmetric channel-engineered MOSFET
structures have been developed in order to satisfy two
competing requirements: the reduction of short-channel
effects and an improvement in hot-carrier reliability. One very
promising structure that improves upon both is the structure
made with the focused-ion-beam (FIB) implantation. The FIB
region is a p+ region that is located near the source end of
the channel [20]. We explore here the effects of electron–
electron scattering on a standard MOSFET and on a MOSFET
including a FIB implant. Figure 1 shows a MOSFET with a
FIB implant.

In this work, the ratio of gate-to-substrate current, Ig/Isub,
is investigated as an indicator of device degradation. For
ultra-small channel lengths, there are degrading and non-
degrading components in the gate and substrate currents.
The non-degrading components have a strong correlation, so
that the ratio Ig/Isub is an accurate indicator of the device
degradation. In the conclusion, we discuss reasons for the
apparent short device lifetimes found. Section 2 reviews the
theory of electron–electron scattering as it is implemented in
this work. Section 3 describes plasmon scattering. Then
section 4 discusses the calculation of gate and substrate
currents. Section 5 goes into the simulation results and

section 6 gives the conclusions. Following the conclusions,
the appendix explains the kinetic simulation technique used in
this work.

2. Theory of electron–electron scattering

In this work, the effects of electron–electron scattering on
the high-energy tail electrons are investigated. Scattering
mechanisms used in the simulations include acoustic phonon
scattering, optical deformation potential scattering, ionized
impurity scattering, impact ionization, and electron–electron
scattering. This section discusses some of the relevant
theory for electron–electron scattering and the details of
implementation based on Ferry [21, 22], who followed the
work of Takenaka et al [23]. They had implemented inter-
carrier scattering to calculate the distribution function for
GaAs. In this work we employ a single-particle electron–
electron scattering approach which uses energy-dependent
frequencies as derived by Ferry [22].

Since the literature indicates that electron–electron
scattering can account for hot-carrier effects at low supply
voltages, it has been included in the simulations. Although the
version of the code which implements the electron–electron
scattering takes longer to run than the version without it, its
inclusion is necessary in order to explore the effects on the tail,
especially at low supply voltages.

The difficulty in dealing with the electron–electron
interaction arises from the nonlinear behavior of the interaction
potential and the long range of this Coulomb potential. In
devices of interest today, the Debye length is smaller than the
interatomic distance [21]. Goodnick and Lugli performed a
study of non-equilibrium transport in a quantum well in which
they incorporated electron–electron scattering explicitly. They
monitored the energy exchanged during the simulation and
found that it was generally quite small [24].

The method employed here uses the Fermi golden
rule approach in order to find the scattering rate. The
Coulomb scattering potential is treated in the static screening
approximation, which means that the scattering matrix element
is

M(q) = e2

εs

(
q2 + q2

D

) (3)

where εs is the static dielectric function [21, 22].
The expression for the electron–electron scattering rate is

given by

�(k) = m∗e4

8πh̄3ε2
s q

2
D

∑
k2

f (k2)

( |k2 − k|
(|k2 − k|)2 + q2

D

)
(4)

where k and k2 are the momentum wave vectors of the initial
particle and the particle with which it interacts, respectively.
The wave vectors k′ and k′

2 represent the corresponding
quantities after the scattering event.

This form of the scattering rate expression does not
distinguish between emission and absorption of energy by
the incident electron. By reformulating the energy-conserving
delta function in the original integration, the integration over
k′ can be changed to an integration over q = k − k′. One can
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then arrive at expressions that explicitly treat the energy loss
or gain of the incident electron during the collision.

This results in an emission rate of

�em
ee (k) = nm∗e4

4πε2
s h̄

3k

(
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2πkBTe

)1/2

×
∫ E(k)/h̄

0
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where the limits of integration on q are

k −
√

k2 − 2m∗ω
h̄

= q− < q < q+ = k +

√
k2 − 2m∗ω

h̄
(6)

and an absorption rate of
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with limits of integration on q of√
k2 +

2m∗ω
h̄

− k = q− < q < q+ = k +

√
k2 +

2m∗ω
h̄

. (8)

where h̄ω represents the energy gain or loss of the incident
electron and m∗ is the appropriate effective mass. For the
portion of the expression that precedes the first integral sign,
the density-of-state effective mass (1.084m0) is used, where
m0 is the electron rest mass, given by 9.1095 × 10−31 kg. For
the portion of the electron–electron scattering rate expression
following the first integral sign, which involves a change in
energy, the conductivity effective mass is used (0.26m0). n is
the electron density, Te is the electron temperature and qD is
the Debye screening wave vector, which is given by

qD =
√

ne2

εkBTe

. (9)

The value of electron temperature used in the expression
for the electron–electron scattering rate as well as for the
Debye screening wave vector used in this same expression
corresponds to the value given in Ferry [22], as this is the value
(Te = 2500 K) found in modern MOSFETs by characteristic
light emission.

In the expression for the scattering rates for both emission
and absorption, one of the integrations is performed over ω.
This means that for carriers at a given energy, they will go
to various values of energy by losing or gaining an energy of
h̄ω during the collision. In the implementation of electron–
electron scattering in the code, thirty-two values of ω are
used for each value of energy. This was to ensure that
the scattering would not produce results that had electrons
clumping in certain values of energy within the distribution.
In the expressions given above for electron–electron scattering,
if the outer integral is not performed, we have the scattering
rate at energy E for a change in energy of h̄ω.

The convective scheme tracks particles by following cells.
Each particle in a given cell is at the same velocity. The
cells are triangles and quadrilaterals that move in the plane of
the simulation region. The corners of these cells get moved
according to the equations of motion. The cells originate from
fixed cells on the mesh and are launched as sheets, or sets of
contiguous cells, at the beginning of an iteration. In this case,
the iteration lasts for 25 timesteps, after which the result of
the previous iteration is used as an input for the next iteration.
The reason for using an iteration of 25 timesteps is that the
iteration needs to last for 5 collision times, and 5 timesteps
represent one collision time.

Electron–electron scattering depends upon the density of
electrons in the spatial cell, and so the scattering frequency for
the cell was made to depend on the electron density in the given
cell. However, the scattering frequency used to determine
the timestep for each sheet was maximum for that sheet and
so it was calculated based on the maximum concentration of
electrons on the mesh. The sheet samples the entire mesh,
hence the need to check the density on the entire spatial mesh.
The scattering frequency for each individual cell did, however,
depend on the actual concentration in the given spatial cell.

At the end of a timestep, each cell is in a position of
overlap with one or more cells of the original mesh. Particles
get mapped back to the fixed mesh according to the fractional
portion of overlap with the underlying cells as well as the
scattering frequency. The product of the scattering frequency
and the timestep for each value of velocity on the mesh are
equal to 0.2. The timestep for a given sheet in the simulation
was determined by ν(E) dt (E) = 0.2, where ν(E) is the
scattering frequency. This gives a different value for the
timestep for each value of velocity. This is different than
some previous implementations of the convective scheme, in
which the same timestep was used for all of the sheets.

3. Plasmon scattering

The previous section was concerned with the screened
Coulomb interaction for single-particle scattering. In this
section, we discuss the long-range part of the Coulomb
interaction, which is responsible for scattering by collective
oscillations of the electron gas, or plasmons. The summation
over q = k−k′ that appears in a Fourier transform of potential
can be split into a short-range part, for which q > qc, and a
long-range part, for which q < qc, where qc is a cut-off
wave vector defining the boundary between these two types of
scattering [21].

The scattering rate for plasmon scattering becomes

�e-pl(k) = m∗e2ωp

4πε(0)h̄2k

[
Nq ln

qD/k√
1 + h̄ωp/Ek − 1

+ (Nq + 1) ln
qD/k

1 − √
1 − h̄ωp/Ek

]
(10)

where m∗ is the electron effective mass, ωp is the plasmon
frequency, qD is the Debye screening wave vector and Nq is a
function of the carrier temperature, given by

Nq =
[

exp

(
h̄ωp

kBTe

− 1

)
− 1

]−1

(11)
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In this work, plasmon scattering is included in some of the
runs in order to take into account the long-range component of
the electron–electron scattering. In the following section, the
method of calculating substrate and gate currents is discussed.

4. Substrate and gate currents

In this section, the calculation of gate and substrate currents is
presented. It begins with a discussion of the applicability of
the power-law model to transistor devices for device lifetime
prediction, proceeds with a discussion of the manifestation of
substrate currents that results in a parasitic bipolar transistor
and next talks about a recently derived empirical model for
calculating device lifetime based on the ratio of gate-to-
substrate current. Following this, it explains the calculation
of gate and substrate currents from the electron energy
distribution, including an expression used for the oxide
injection probability and another for the oxide barrier height.

Takeda and Suzuki [25] developed an empirical model for
device degradation for NMOS transistors with channel lengths
ranging from 0.35–2 µm. In Takeda’s empirical model [25],
experimental data were fit to a power law of the form

�Vth(or �Gm/Gm0) = Atn. (12)

The conventional power-law empirical model is valid only
for relatively long channel length devices and/or low stress
conditions. Such models underestimate the lifetime for deep-
submicron MOS transistors. Cui et al [26] derived a relatively
simple empirical expression which correlates the MOS lifetime
with the ratio of gate-to-substrate current. This is an effective
alternative to the power-law models for the lifetime prediction
of modern devices.

In this work, gate and substrate currents are obtained from
the electron energy distribution. The substrate current, Isub,
can be used as a predictor for device lifetime, since the hot-
electron effects are driven by the channel electric field, which
is maximum at the drain end of the channel. The substrate
current, if not controlled, can lead to electron injection into
the substrate and potential fluctuations in the substrate. These
in turn induce snap-back breakdown and CMOS latchup which
is an effect whereby a parasitic p-n-p-n device is created. This
parasitic structure with a bipolar action consists of the p+-
region of the PMOS device, the n-type substrate, the p-well of
the NMOS device and the n+-region of the NMOS device. The
point is that a low impedance path is created from the power
supply to ground, which leads to failure within the device.
[27]

In the longer channel devices, substrate current is an
accurate representation of the degradation in the device. In
a deep-submicron MOSFET, however, the base width of the
parasitic n+-p-n+ transistor (formed by source, substrate and
drain) is quite narrow. This means that the base current
from the parasitic transistor becomes a significant part of the
substrate current. In the longer channel device, all of the
substrate current is due to impact ionization so that all of
the substrate current contributes to device degradation.

The gate current in deep-submicron MOSFETs also has
a component that does not contribute to device degradation.

In these devices, thin gate oxides are used and a significant
portion of the gate current is due to direct tunnelling.
Only a portion of the gate current arises from trapping,
detrapping and interface trap generation. So, both the
gate and substrate currents have what can be referred to as
‘non-degrading’ current components. There is no known
experimental procedure by which the non-degrading currents
can be separated from the total current [26].

It was found that the non-degrading gate current and the
non-degrading substrate current correlate strongly. Hence, Cui
et al [26] developed an expression for the device lifetime using
the ratio of gate current to substrate current, given by

τ = τ0 exp(αIg/Isub) (13)

where τ0 and α are the empirically derived constants. The ratio
of Ig/Isub is a measure of the significance of the degrading
component. The device lifetime improves with an increase of
this ratio. It has been shown experimentally that the substrate
current is six to nine orders of magnitude higher than the gate
current [28].

In the kinetic simulation, we integrate across the
distribution in the channel of the MOSFET to calculate the
substrate and gate currents. The expressions used to obtain
the substrate and gate currents from the electron energy
distribution are given by

Isub = q

∫ L

0

∫ ∞

Ethii

fσ (E, x)Wii(E) dE dx (14)

and

Igate = q

∫ L

0

∫ ∞

Ethox

v(E)fσ (E, x)PinjP2 dE dx (15)

where q is the magnitude of the electron charge, x is the
x-coordinate along the channel, L is the channel length,
Ethii

is the threshold energy for impact ionization, Ethox

is the threshold energy for injection of electrons into the
oxide and v(E) is the electron velocity, where only electrons
with momentum directed toward the interface are considered,
fσ (E, x) is the energy distribution integrated over the channel
cross section, Wii(E) is the impact ionization scattering
frequency, Pinj is the probability of injection into the oxide
and P2 is the probability that an electron does not scatter in the
image potential well in the oxide. Impact ionization creates
electron–hole pairs, and the electrons leave through the drain,
while the holes diffuse from the drain into the substrate. We
now turn to a description of the probability of emission into
the oxide.

4.1. Probability of electron emission into oxide

Hot electrons can be emitted into the oxide by either tunnelling
or by overcoming the Schottky-lowered barrier. The Pinj used
in the simulations represents the probability of an electron
tunnelling into the oxide. In this work, the transmission
probability is found by using the WKB approximation as given
by Huang et al [29]. The electrons in the channel encounter
a trapezoidal barrier when their energies are lower than the
barrier minimum, φmin. They encounter a triangular barrier
when the electron energy is higher than the barrier minimum
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φmin but lower than the barrier maximum φmax. The tunnelling
probability across a trapezoidal barrier is given by

Pinj = exp

{
− 4π

h
(2m∗)

[
2

3q|Eox |
]

× [(φmax − Ey)
3/2 − (φmin − Ey)

3/2]

}
. (16)

The tunnelling probability across a triangular barrier is given
by

Pinj = exp

{
−4π

h
(2m∗)

[
2

3q |Eox |
]

(φmax − Ey)
3/2

}
(17)

where m∗ = 0.5m0 is the electron effective mass in the oxide
layer, Eox is the normal electric field in the oxide and Ey is
the energy of an electron moving in the y-direction.

For electrons with energy above φmax, thermionic
emission occurs at the silicon-oxide interface, i.e., electrons
are able to surmount the barrier into the oxide without
tunnelling. Not all electrons that are injected into the oxide
make it to the gate electrode to contribute to the gate current.
The probability P2, or the probability of not scattering in the
oxide image-potential well [30] is given by

P2 = exp(−Xox/λox) (18)

where Xox is the oxide thickness and λox is the mean free path
in the oxide. Fischetti et al [31] explored ballistic transport in
thin silicon dioxide films. Their results indicated an average
value of 1 nm for the mean free path in the oxide. This agrees
well with experiment [31], and so this is the value applied
in the expression for P2 in this work. Although P2 does not
depend on energy in the expression used in this work, the gate
current depends on the energy of the electrons through Pinj .

The lucky-electron model has found widespread
application in the calculation of substrate and gate currents.
Due to the finite mass of an electron and the relaxation time
effect, there is a finite time involved in the carriers reaching
a steady-state condition. It has been found that models based
on the local field cause substrate and gate currents to be
overestimated by several orders of magnitude, although the
trend is still captured. This phenomenon refers to a fluid
code, or drift–diffusion simulation. The reason that this
type of simulation overestimates the actual currents is that it
assumes implicitly that carriers instantaneously reach a steady-
state energy corresponding to the local field [32]. A kinetic
simulation, such as the one used in this work, integrates the
distribution along the characteristic curves. This allows the
carriers to respond to the variation of the field in a manner that
approximates reality much more closely. In some instances,
in the lucky-electron model, the mean free path used is energy
independent. The mean free path is clearly energy dependent,
so the use of the correct energy-dependent mean free path in
this work improves the accuracy of the model [33].

The distribution that is used to calculate the currents
is found by the kinetic simulation, which employs energy-
dependent scattering rates. In each spatial cell on the
mesh, there exists a set of cells of various energies.
The gate and substrate currents are calculated from the
distributions obtained from the converged convective scheme

simulations, which use energy-dependent scattering rates, and
hence energy-dependent mean free paths for each scattering
mechanism. The CS implemented in this work uses a uniform
density of electrons in a cell, so that the distance from the
silicon-oxide interface is determined by the centroid of the cell.
The cells are irregularly shaped triangles and quadrilaterals
which are ‘launched’ at the beginning of an iteration.

4.2. Oxide barrier height

In this section the oxide barrier height with corrections for
Schottky-barrier lowering and tunnelling is discussed. At
large gate voltages where the surface is strongly inverted, the
average oxide field is determined by Eox = VG/tox , where
tox is the oxide thickness. The oxide thickness for the 35
nm channel length device is 2.5 nm, and the oxide thickness
for the 70 nm channel length device is 5 nm. The total barrier
height including corrections for Schottky-barrier lowering was
determined to be

qV = 3.1 eV − βE1/2
ox (19)

where 3.1 eV is the interfacial barrier (Si–SiO2 interface)
and βE

1/2
ox is the term for Schottky-barrier lowering. The

value for β was experimentally determined to be 2.59 ×
10−4q(V cm)1/2 [34], where q is the magnitude of the charge
on an electron. In the case of the 35 nm channel-length
device, with a 2.5 nm oxide and 0.9 V applied on the gate, the
barrier height corrected for Schottky-barrier lowering becomes
2.61 eV. In the case of the 70 nm channel-length device,
with a 5.0 nm oxide and 1.5 V applied on the gate, the
barrier height corrected for Schottky-barrier lowering becomes
2.651 eV. Tunnelling across the barrier is handled by
implementing the WKB approximation as discussed in the
previous section.

In this section, we have discussed the substrate and gate
currents as well as a couple of quantities that are necessary in
order to calculate the gate current, namely the probability of
injection into the oxide and the barrier height for injection into
the oxide. In the following section, we will see some results
from the simulation with the CS.

5. Results

In this section we observe results from the simulation of
35 nm and 70 nm channel length MOSFETs. The 2D device
simulation tool SGFramework [37] is run before the kinetic
simulation to obtain the electric potential and electron density
at each node on the mesh. This in turn is used in the initial
guess for the CS simulation. We next look at simulation results
from a 35 nm channel length transistor.

5.1. 35 nm channel length transistor

In this section, we observe results from the 35 nm MOSFET. In
this work we have implemented an NMOS transistor (p-type
substrate with n-type source and drain regions). The channel
length is 35 nm and the device length, including source and
drain regions, is 50 nm; two cases are considered. The first case
has a substrate doping concentration of 8.0 × 1017 cm−3 and a
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Figure 2. Distribution of electrons in a cell in channel for 35 nm
channel length device with 0.9 V applied on gate and drain with and
without electron–electron scattering included. The line indicated by
(◦) represents the distribution without electron–electron scattering
and the line indicated by (♦) represents the distribution with
electron–electron scattering. The cell is in the channel
approximately at the midpoint between the source and the drain.
The potential in the cell is 1.32 V, the substrate doping concentration
is 8.0 × 1017 cm−3, and the source and drain doping concentration is
8.0 × 1019 cm−3.

source and drain doping concentration of 8.0 × 1019 cm−3.
The second case has a substrate doping concentration of
1.0 × 1018 cm−3 and a source and drain doping concentration
of 2.0 × 1020 cm−3. The minority carriers in the device are
electrons, and during device operation the strong inversion
in the channel of the device gives rise to a high density of
electrons in the channel. A potential of 0.9 V was applied on
the gate and drain of the MOSFET. The reason for applying
0.9 V on the gate and drain is that device reliability experiments
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Figure 3. Distribution of electrons in cell in channel for 35 nm channel length device with 0.9 V applied on gate and drain with and without
electron–electron scattering included. The line indicated by (◦) represents the distribution without electron–electron scattering, and the line
indicated by (♦) represents the distribution with electron–electron scattering. The cell is in the channel approximately at the midpoint
between the source and the drain. The potential in the cell is 1.28 V, the substrate doping concentration is 1.0 × 1018 cm−3, and the source
and drain doping concentration is 2.0 × 1020 cm−3.

are often performed under these conditions in order to ‘stress’
the transistor device and to observe hot-carrier effects [36].
The condition Vg � VD is characteristically associated with
maximum gate current, and the condition Vg � VD/2 is
characteristically associated with maximum substrate current.
Note, however, that the condition Vg � VD is the worst case
degradation bias condition for MOSFETs with channel lengths
below 110 nm [38].

Figure 2 shows the electron energy distribution in the cell
with 0.9 V applied on both the gate and the drain for the device
with a substrate doping concentration of 8.0 × 1017 cm−3 and
a source and drain doping concentration of 8.0 × 1019 cm−3.
Figure 3 shows the electron energy distribution in the cell with
0.9 V applied on the gate and drain for the 35 nm device
with substrate doping of 1.0 × 1018 cm−3 and source/drain
doping of 2.0×1020 cm−3. The device shown in figure 3 has a
higher doping concentration than the device shown in figure 2
which is representative of the values indicated in the ITRS
(International Technology Roadmap for Semiconductors).
Each plot exhibits a curve of the electron energy distribution
excluding electron–electron scattering and a second curve that
includes electron–electron scattering. It is apparent from the
plots that there is one peak at low energy and a second peak at
roughly the value of energy that the electrons can acquire as
they traverse the channel. It can also be noted that the second
peak occurs at a lower energy as the gate voltage is decreased.
Beyond this value of energy the two curves are different in
that the electron–electron scattering, or Coulomb scattering,
has increased the distribution of electrons in the tail. As the
channel length becomes shorter, the gate voltage has more
of an effect on the transistor because of charge sharing [39].
This means that depletion charge underneath the gate is shared
with depletion charge in the source/drain regions. The gate
charge encroaches on the source/drain charge with a resulting
triangular region of charge shared between the gate and source
or drain region.
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Figure 4. Distribution of electrons in cell at the drain end of the
channel for a 70 nm channel length device with 1.5 V applied on
gate and 1.5 V applied on the drain. The oxide thickness is 5 nm.
The symbol (◦) represents the distribution without
electron–electron scattering, the symbol (♦) represents the
distribution with electron–electron scattering, and the symbol (�)
represents the distribution with both electron–electron scattering and
plasmon scattering. The potential in the cell is 1.08 volt, the
substrate doping concentration is 8.0 × 1017 cm−3, and the source
and drain doping concentration is 8.0 × 1019 cm−3.

The effect of the Coulomb collisions is to increase the
distribution in the tail. We do not attempt to apply the model
for device lifetime prediction to the 35 nm device. For an
oxide thickness less than 5 nm hot electrons are not the driving
mechanism for gate current, but rather direct tunnelling occurs
[40]. It would be necessary to solve the Schrodinger equation
self-consistently with Poisson’s equation in order to obtain the
gate current for such thin oxides. In the following section,
results from the 70 nm channel length transistor are presented.

5.2. 70 nm channel length transistor

In this section, results from the 70 nm channel length transistor
are considered. The channel length is 70 nm and the device
length, including source and drain regions, is 100 nm. Two
cases are considered, both of which have an oxide thickness
of 5 nm. The first case has a substrate doping concentration of
8.0 × 1017 cm−3 and a source and drain doping concentration
of 8.0 × 1019 cm−3. The second case has a substrate doping
concentration of 8.0 × 1017 cm−3, a source and drain doping
concentration of 8.0 × 1019 cm−3 and a FIB implantation
region which is 20 nm wide with a doping concentration
of 1.0 × 1019 cm−3. Figure 4 shows the case for 1.5 V
applied to the gate and drain of the 70 nm device with a
5 nm oxide thickness, a substrate doping concentration of
8.0 × 1017 cm−3 and a source and drain doping concentration
of 8.0 × 1019 cm−3. In this case, plasmon scattering was also
included in the simulation. As can be seen from the plot,
there is no difference between the case that includes electron–
electron scattering and the case in which both electron–
electron scattering and plasmon scattering are included.
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Figure 5. Distribution of electrons in the cell in the center of the
channel for a 70 nm channel length device with 1.5 V applied on the
gate and 1.0 V applied on the drain. The oxide thickness is 5 nm.
The symbol (◦) represents the distribution without electron–electron
scattering and the symbol (♦) represents the distribution with
electron–electron scattering included. The potential in the cell is
1.05 volt, the substrate doping concentration is 8.0 × 1017 cm−3, and
the source and drain doping concentration is 8.0 × 1019 cm−3.

As the drain bias is increased, the second peak of the curve
is moved to a higher value of energy. This occurs because the
drain bias can contribute to the energy an electron acquires in
traversing the channel. An increase in the gate voltage appears
to increase the amount of electrons in the tail region. The effect
of decreasing the drain voltage while leaving the gate voltage at
1.5 V moves the second peak to a lower value of energy while
the electron–electron scattering still increases the distribution
in the tail by roughly the same amount. This demonstrates
the influence of the gate voltage on the gate and substrate
currents. Note that when the drain voltage is higher than the
gate voltage the configuration of the electric field is such that
the carriers have a greater tendency to stay within the channel.
Figure 5 shows the distribution of a cell in the channel for the
same doping concentrations as figure 4. Figure 6 shows the
distributions for the 70 nm MOSFET with and without the FIB
implant. Figure 7 shows the gate and substrate current values
as the gate voltage varies from 0.5 volt to 1.5 V for the 70 nm
transistor without the FIB implant. Figure 8 shows the gate
and substrate current values as the drain voltage is varied for
the 70 nm device with a FIB implant. Channel hot-electron
(CHE) injection is the mechanism primarily responsible for
gate current that occurs from electrons surmounting the barrier
height into the gate oxide. The escape of ‘lucky electrons’ from
the channel results in significant degradation of the oxide and
of the Si/SiO2 interface. In a nanoscale device, tunnelling
current also gives a significant contribution to the gate current.
Due to avalanche multiplication at the drain (which contributes
to the substrate current), the gate current is usually several
orders of magnitude smaller than the substrate current. Gate
current, which has a peak value at Vg � Vd characteristically
results from channel hot-electron injection. Ning et al [34, 36]
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Figure 6. This figure compares the electron energy distributions for
70 nm MOSFETs with and without the FIB implant. 1.5 V is
applied on the gate and 1.0 V is applied on the drain. The oxide
thickness is 5 nm. The symbol (◦) represents the distribution
without electron–electron scattering and without the FIB implant.
The symbol (♦) represents the distribution with electron–electron
scattering and without the FIB implant. The symbol (�) represents
the distribution without electron–electron scattering and with the
FIB implant. The symbol (�) represents the distribution with
electron–electron scattering and the FIB implant. Both devices have
a substrate doping concentration of 8.0 × 1017 cm−3 and a source
and drain doping concentration of 8.0 × 1019 cm−3. The MOSFET
with the FIB implant also has a 20 nm wide FIB implant with a
doping concentration of 1.0 × 1019 cm−3.
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Figure 7. This figure shows the gate and substrate current values for
the 70 nm MOSFET without FIB implant when electron–electron
scattering is included in the simulation. The drain voltage in each
case is 1.5 V and the gate voltage is varied from 0.5 V to 1.5 V. The
symbol (◦) represents the gate current and the symbol (♦)
represents the substrate current.

reported that the conditions are optimum for CHE injection
of ‘lucky electrons’ if an n-channel MOSFET operates under
this biasing condition. The substrate currents are larger than
the gate currents, since the threshold for impact ionization is
lower than the threshold for injection into the oxide. Both
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Figure 8. This figure shows the gate and substrate currents for the
70 nm MOSFET with a FIB implant. The gate voltage is 1.5 V in
each case, and the drain voltage is varied from 0.5 V to 1.5 V. The
symbol (◦) represents the gate current, and the symbol (♦)
represents the substrate current when electron–electron scattering is
included in the simulation.

Table 1. Parameters for device lifetime model.

Channel length τ0 α

0.25 µm 1.862 × 103 1.494 × 106

0.18 µm 6.026 × 103 1.128 × 106

70 nm 1.60 × 105 5.188 × 105

currents are increased due to electron–electron scattering, as
can be expected from the increase in the number of electrons
in the high energy tail.

The values found for the lifetime prediction model of Cui
et al [26] for the 0.25 µm device were τ0 = 1.862 × 103 and
α = 1.494 × 106. The values found for the 0.18 µm device
were τ0 = 6.026 × 103 and α = 1.128 × 106. Performing a
linear interpolation on these values to determine values for a
70 nm channel length, we obtain values of τ0 = 1.26 × 104

and α = 5.53 × 105. Performing a log(x) interpolation, we
obtain values of τ0 = 1.60 × 105 and α = 5.188 × 105. Since
the values were obtained by extrapolation, they are viewed
with the appropriate caution. However, we still see the trend
of a reduction in the lifetime as the ratio Ig/Isub diminishes.
Sometimes lifetime models are based on the time to breakdown
from charge-pumping experiments, rather than the actual time
that a device lasts in a circuit. Table 1 shows the parameters
used in the lifetime model for the various channel lengths.

Applying the parameters obtained by Cui et al to the 70 nm
MOSFET, we obtain for the MOSFET without the FIB implant
a lifetime of 6.08×103 s (for a ratio of Ig/Isub of 7.75×10−9).
For the MOSFET with the FIB implant, we obtain a lifetime
of 6.09 × 103 s (for a ratio of Ig/Isub of 9.51 × 10−9). Using
the values for the lifetime model by linear interpolation, a
lifetime of 1.265 × 104 s is found for the MOSFET without
the FIB implant and a lifetime of 1.267×104 s is found for the
MOSFET with a FIB implant. By contrast, using the values
obtained by log(x) interpolation, a lifetime of 1.606 × 105 s
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is obtained for the MOSFET without the FIB implant, and a
lifetime of 1.608 × 105 s is obtained for the device with a FIB
implant. We note that the FIB implant causes no significant
change in the lifetime when using the same substrate doping in
both the MOSFET with and without the FIB implant. In a later
section, results are presented for a device with and without a
FIB implant where the threshold voltage is the same for both
devices, which bears out the point of a decreased lifetime due
to an increase in doping concentration more strongly. Again,
the results indicate that the hot-carrier degradation does not
subside simply by reducing channel length and biases on
the device. The Ig/Isub ratio is in the 10−8 range, which
points toward increased degradation effects. We note that this
ratio is comparable to published data for devices of the same
approximate channel lengths [4].

It is beyond the scope of this paper to provide a
first-principles analysis of the damage caused by the tail,
or to justify the scaling of damage with the ratio of the
currents. We shall thus avoid the temptation to speculate
as to the exact mechanisms involved. We do note, however,
that as determined by uniform-substrate hot-carrier injection
experiments, probabilities for electron trapping, electron trap
generation and interface trap generation are generally 10−7 or
less [41]. We do observe that electron–electron collisions
greatly enhance the tail of the distribution, and so they
profoundly affect these currents. The reasons for the strong
electron–electron collisions stem from the high carrier density,
discussed elsewhere in this paper. We note that the calculated
gate and substrate currents do depend strongly on the threshold
energies. The threshold energy for impact ionization used in
this work is 1.65 eV, which represents 1.5 times the bandgap
of silicon. If one were to use a threshold energy of 2 times
the bandgap, which is the upper limit of accepted values, the
substrate current would be smaller, resulting in a higher Ig/Isub

ratio. As mentioned previously, the threshold for the gate
current depends upon the gate voltage and the oxide thickness,
which are both essential in determining the electric field in the
oxide.

Chung et al [2] obtained experimental evidence that hot-
electron degradation worsens as the effective channel length
is reduced due to the nonscalability of the degraded region of
the channel. Even at the same value of substrate current,
the hot-electron degradation was worsened with a shorter
effective channel length [42]. Also, they found that for a
given value of Isub/Weff less device degradation occurred
as the oxide thickness was reduced. It is expected in that
case that less trapping and interface-state generation occur
due to the reduced time that the hot electrons spend in the
oxide. Hot-carrier effects continue to be an issue at biases
which are substantially below the barrier height for injection
into the oxide and the threshold for impact ionization. The
occurrence of these effects can be attributed to electron–
electron scattering. Electron–electron scattering most likely
has a greater effect at such short channel lengths. This is
because in scaled devices, the doping concentration is higher
than in long channel devices, and the rate of electron–electron
scattering depends on the density of electrons in the device.
The results yield lifetimes that are quite short. This can be
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Figure 9. This figure shows the electron energy distribution for the
250 nm MOSFET with a FIB implant with and without
electron–electron scattering included in the simulation. The cell is
located in the channel at the midpoint between source and drain.
The substrate doping concentration is 1.0 × 1016 cm−3, the source
and drain doping concentration is 1.0 × 1019 cm−3, and the 70
nanometer-wide FIB region has a doping concentration of
1.8 × 1018 cm−3. 3.0 V is applied on both the gate and the drain.
The symbol (◦) represents the distribution without
electron–electron scattering, and the symbol (♦) represents the
distribution when electron–electron scattering is included. The
potential in the cell is 0.81 volt.

ascribed to an increase in the amount of Coulomb collisions
at these short channel lengths. The high doping levels
(2.0×1020 cm−3) for the 70 nm channel length device translate
into high electron densities and a large amount of Coulomb
scattering. Hence, there is a strong effect which points toward
decreased lifetimes for ultra-short channel devices.

5.3. 250 nm transistor

Kang et al [43] developed an optimization technique for
threshold voltage characterization based on 2D device
simulation and 3D VT contour mapping. Based on their results
of a constant threshold voltage for a device with and without
a FIB implant, we include results for a 250 nm transistor. At
this channel length, the standard MOSFET has a substrate
doping concentration of 1.0 × 1018 cm−3 and a source/drain
doping concentration of 1.0 × 1019 cm−3. The MOSFET with
the FIB implant region has a substrate doping concentration
of 1.0 × 1016 cm−3, source and drain doping concentration of
1.0 × 1019 cm−3, and a 70 nm wide FIB region with a doping
concentration of 1.8 × 1018 cm−3. This yields a threshold
voltage of 0.68 V for both cases. Figure 9 shows the energy
distribution with and without electron–electron scattering for
the 250 nm MOSFET with a FIB implant. For the 250 nm
MOSFET with the FIB implant, the ratio of gate-to-substrate
current is 8.32×10−7, which yields a lifetime of 6.45×103 s,
using the model of Cui et al [26]. The 250 nm MOSFET
without the FIB implant, with the same threshold voltage
as the device with the FIB implant, has a ratio of gate-to-
substrate current of 3.8 × 10−9, which yields a lifetime of
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1.87 × 103 s. Since the substrate doping is very high for
the standard MOSFET (1.0 × 1018 cm−3), the lifetime for
the device is significantly lower than for the MOSFET that
includes the FIB implant. Yet, the comparison of the lifetimes
shows the improvements in reliability provided by the FIB
implant. The use of the FIB implant in the channel allows the
substrate doping to be lower, resulting in less electron–electron
scattering. Thus, the lifetime model predicts a longer lifetime
for the device with the FIB implant as expected.

6. Conclusions

Kinetic simulation by the transition probability matrix (TPM)
method of the CS was used in this work to calculate the electron
energy distribution in nanometer-scale nMOSFETs. In order
to reconcile short channel effects and hot-carrier reliability,
an asymmetric device structure, the FIBMOS (focused-ion-
beam MOSFET) was used in the simulations in addition to a
MOSFET with uniform doping in the channel. High doping is
used in the channel of ultra-small devices in order to prevent
punchthrough, although this leads to high electric fields in
the device. The FIB implant helps to reduce the electric
field in the channel region of the nanometer-scale device and
allows a lower substrate doping concentration than would be
required without the FIB implant to achieve the same threshold
voltage. The potential and electron density at each node of a
two-dimensional mesh were obtained from the drift–diffusion
simulation tool SGFramework and used as input for the kinetic
simulation. A single-particle electron–electron scattering
approach was used which enabled the use of energy-dependent
emission and absorption scattering rates for electron–electron
scattering. Worst-case stress conditions Vg � Vd were used in
the simulations. The Coulomb scattering was seen to enhance
the high energy tail of the electron distribution in the 35 nm
and 70 nm channel length transistors. The electron–electron
scattering is seen to play a significant role in the heating
of electrons in the MOSFET channel for nanometer-scale
devices. The ratio of gate-to-substrate current is calculated,
which is an indicator of the severity of degradation effects
in the device. The ratio of Ig/Isub is observed to depend
strongly on the threshold energies used in the calculation
of the currents. At nanometer-scale channel lengths, there
are degrading and non-degrading components of substrate
and gate current. The non-degrading components correlate
strongly, so that the ratio Ig/Isub is an accurate indicator
of the level of device degradation. We have assumed that
the model for device lifetimes based on the ratio of gate-to-
substrate currents is an efficient method for predicting the
lifetimes and also that extrapolation of the model down to
shorter channel length devices is an accurate assessment of
the lifetimes. Additionally, the effects of electron–electron
scattering are increased for nanometer-scale channel length
devices, because the electron–electron scattering rate depends
on the density of electrons in the channel. Degradation effects
are likely to have an effect on the transistor performance even
at such short channel lengths, as evidenced by the existence of
gate and substrate currents. Devices at this scale are fabricated
with higher doping concentrations, due to the requirement for

shallow junctions, which implies greater electron densities
in the channel. This leads to a greater amount of Coulomb
collisions and adds significantly to the amount of electrons in
the tail of the distribution. Such an increase in the amount of
Coulomb collisions may lead to significantly reduced lifetimes
in nanometer-scale devices.

Appendix. Overview of kinetic model

In this work the CS is used to find a set of probabilities for use in
an iterative scheme which iterates in order to find collision rates
in cells. The CS tracks a group of particles which just had a
collision in a given initial cell, in order to determine where they
have their next collision. Depending on their velocity after the
collision, they are divided into different groups. Each group is
followed as they move ‘ballistically’ and when they have their
next collision, their location and energy are recorded. The
fractions of the particles going to each final phase space cell
then yield the probabilities needed by the iterative calculation
of the rates.

The CS consists of a ballistic move, which is then followed
by collisions. The ballistic move portion can be represented
by the Vlasov equation, also referred to as the collisionless
Boltzmann equation, which is given by

df

dt
= ∂f

∂t
+ v · ∇f +

dk
dt

· ∂f

∂k
= 0. (A.1)

The Vlasov equation is integrated along the characteristic
curves, which are given by dx/dt = v and h̄dk/dt = F.
Phase space cells, containing a density of electrons, follow
the trajectory of the characteristic curves. This implements
Liouville’s theorem, which states that along the trajectory of
any phase point the probability density in the neighborhood of
the point remains constant in time [44]. Collisions are included
at the end of a timestep. This method of characteristics, the
CS, operates as follows [7]. The electron (or hole) distribution
function f (x, v) is advanced in time according to a propagator
p(x, v, x ′′, v′′,�t) such that

f (x, v, t + �t) =
∫

f (x ′′, v, t) · p(x, v, x ′′, v′′,�t) dx ′′ dv′′.

(A.2)

The propagator, or Green’s function, p(x, v, x ′′, v′′,�t),
determines what fraction of particles move from cell (x ′′, v′′)
to cell (x, v) in the time step �t . The propagators allow
Boltzmann’s equation to be solved by successive convolutions
of the ‘old’ distribution function with the propagator.

The CS updates the distribution each iteration by
calculating successive scattering rates. Figure A1
demonstrates an example of calculating the scattering rates
in a cell. Here we describe more specifically how the CS
computes the probabilities of particles moving from one cell
to a subsequent cell and the probabilities of moving from
one energy to another due to collisions in that spatial cell.
Using the TPM, or propagator, the subsequent iteration takes
the distribution of scattered particles and advances it to the
next cells where scattering takes place [12]. The quantity of
interest is R(c,E), the collision rate of particles in cell c at
energy E. There are two portions to the TPM method. There
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Figure A1. Calculation of the total scattering rate in a cell. The
scattering at rate R1 in cell 1 contributes a scattering rate P 4

1 R1 in
cell 4, as P 4

1 is the probability that a particle which just scattered in
cell 1 will scatter next in cell 4. Similarly, P 4

2 R2 is the scattering
rate contributed by cell 2 and P 4

3 R3 is the scattering rate contributed
by cell 3.

is a ballistic, or collisionless portion, followed by the collision
operator phase.

The first transition probability matrix computes the
number of particles per second that collide in cell c at energy
E′′,

R(c,E′′) =
∑
c′

R(c′, E′)Tbal(c, E
′′ : c′, E′), (A.3)

where R(c,E′′) is the number rate of particles that collide in
cell c at energy E′′, R(c′, E′) is the number rate of particles
that collided in cell c′ and were redistributed with energy E′

in the previous iteration. The way that the rate R(c′, E′) is
iterated on the mesh occurs as follows: consider a spatial
cell c′ and a group of electrons at energy E′. This group
of electrons scatters at a rate R(c′, E′) and has an angular
distribution f (θ, φ, c′, E′). f (θ, φ, c′, E′) is the probability
that an electron with energy E′ that last scattered in cell c′

is moving in a direction within the range φ to φ + �φ and θ

to θ + �θ . Also, Tbal(c, E
′′ : c′, E′) is the probability that a

particle having started in cell c′ at energy E′ will have its next
collision in cell c at energy E′′ = E′ − q��, where E′ is
the kinetic energy, �� is the change in potential and q is the
magnitude of the charge on an electron. The sum is over all
mesh cells c′ at energy E′.

The second transition probability matrix redistributes the
particles after a collision,

R(c,E) =
∑
E′′

R(c,E′′)Tcol(E : E′′), (A.4)

where Tcol(E : E′′) is the probability that a particle, having
previously collided in cell c at energy E′′ will be redistributed
with energy E′ within the same spatial cell c. Equation (A.4)
refers to particles which had energy E′′ before collision and
end up with energy E after the collision. They stay in the
same spatial cell during the collision, so the spatial label c is
unchanged. The rate of particles colliding in cell c with initial
energy E′′ is R(c,E′′). The fraction of these which have final
energy E is Tcol(E : E′′). Thus particles coming in with energy
E′′ contribute a rate of particles arriving at energy E in cell c
of R(c,E) = R(c,E′′)Tcol(E : E′′). The total R(c,E) must
be found by summing over all initial energies E′′.
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